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The finite-difference time domain technique is one of the most robust and accurat
numerical methods for the solution of light scattering by small particles with arbitrary
composition and geometry. In practice, this method requires that the spatial domai
for the computation of near-field be truncated. An absorbing boundary condition mus
be imposed in conjunction with this truncation. The performance of this boundary
condition is essential to the stability of numerical computations and the reliability of
results. In the present study, a new boundary condition, referred to as the mixed |
algorithm, has been developed, which is a generalization of the transmitting boundar
condition originally developed by Liao and co-workers. The present algorithm does
not require spatial interpolation for wave values at interior grid points. In addition,
it produces two minima of spurious reflections at small and large incident angles
allowing efficient absorption of the scattered waves at the boundary for large inciden
angles. When the third-order mixed T algorithm is used, the reflection coefficient
of the boundary is less than 1% for incident angles fronboO0about 70. We find
that the numerical instability associated with the transmitting boundary condition
is caused by the location-dependent amplitude of outgoing waves in the vicinity of
the boundary. For this reason, the mixed T algorithm is stabilized by consistently
introducing diffusive coefficients into the boundary equation. When the stabilized
algorithm is applied, the near-field within the truncated domain can be computed by
using single-precision arithmetic without overflows for more thah t8ps in the
time-marching iteration. Finally, the new absorbing boundary condition is validated
by carrying out numerical experiments involving the propagation of a TM wave
excited by a sinusoidal point source, simultaneous simulation of the wave propagatio
in small and large domains, and the scattering of a TM wave by an infinite circular
cylinder.  © 1998 Academic Press

Key Words:boundary condition; computational domain; finite-difference; light
scattering.
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1. INTRODUCTION

Solution of light scattering by nonspherical particles is of fundamental interest in ma
disciplines including atmospheric remote sensing and radiative transfer [1, 2]. Most
the naturally occurring particles such as ice crystals and nonspherical aerosols in th
mosphere cannot be approximated as spheres or spheroids with acceptable accurac
It is unlikely that the scattering properties of these nonspherical particles can be sol
analytically because proper coordinate systems cannot be defined to impose the ele
magnetic boundary condition on the particle surface. The inhomogeneous compositio
the scattering particles will further complicate the solution. For this reason, numerical
proaches must be applied to compute the scattering properties of nonspherical particls
has been recognized that the finite-difference time domain (FDTD) technique pioneere
Yee [4] is a powerful numerical approach to solve the electromagnetic scattering prob
concerning an object of arbitrary shape and inhomogeneous composition [5-7]. In prac
the FDTD method is applicable only to the computation of near-field within a finite spat
region because the panorama of the time-dependent field in unbounded space cann
handled by any computational resource. Transformation from near-field to far-field is &
required for practical applications. Thus, an artificial boundary must be used to trunc
the infinite region within which the scattering process takes place. To ensure the simul:
field within the truncated domain is the same as in the unbounded case, the artificial bot
ary must have a condition known as absorbing or transmitting boundary condition (ABC
TBC). Otherwise, the spurious reflections from the boundary can contaminate the near-
within the truncated domain.

The development of ABC has been a subject of active research until now, because
performance of the boundary condition is critical to the accuracy of numerical simulatio
In addition, the “white space” between the boundary and scatterer, required by a spe
boundary condition, is an important factor determining the computational cost. The earl
implementation of ABC in conjunction with the application of the FDTD technique t
electromagnetic scattering problems was the average space-time extrapolating metho
although the implementation of ABC can trace back to the solution of the hydrodynar
problems based on the Sommerfeld radiation condition [8]; see, e.g., Vastono and |
[9]. Other approaches, such as the mode-annihilating operator [10] and the extrapole
scheme based on the Poynting vector of the scattered wave [11], have also been deve
to suppress the reflection of the artificial boundary. However, the ABCs derived from
one-way wave equation (OWWE) appear to have been extensively studied. As reviewe
Mooreet al.[12] and Blaschak and Kriegsmann [13], various kinds of approximations of tl
pseudo-differential operator in OWWE have been developed. Among them, the algorit
developed by Mur [14] (hereafter referred to as Mur's ABC) has been widely used in
implementation of the FDTD technique. The second or higher order Mur's ABC involvest
wave values at the intersections of boundary faces. However, the corresponding boun
equations cannot be posed in self-closing form; that is, a less accurate first-order forr
or an extrapolating scheme must be used at the intersections. Moreover, Mur’s algori
is rather tedious, especially in the higher order formulation in the three-dimensional (?
case. In the computation of the scattering of electromagnetic waves by the FDTD mett
the field values at the intersections are not required for updating the field values at inte
grid points. Thus, it is desirable to construct an ABC that can circumvent the disadvant
associated with the requirement of field values at the intersections. We find that the T
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developed by Liaet al. [15] (hereafter referred to as Liao’s TBC) is a good approach fc
the solution of a light scattering problem based on FDTD.

Liao’s TBC is based on the principle of wave propagation; that is, wave values at
boundary are the arrivals of wave disturbances at certain interior points. A complet
reflectionless ABC can be constructed for normal incidence or the one-dimensional (:
case, as noted by Taflove and Brodwin [5]. However, in the two-dimensional (2D) or t
3D case with oblique incidence, the interior points cannot be located due to the unknc
incident angle of outgoing waves. To overcome this difficulty, Léa@l. [15] developed
the multitransmitting method to define the boundary values in terms of the interior valt
equally spaced along the directions normal to the boundary faces. However, the inte
points, in practice, may not be consistent with the computational grid points; thus,
interpolation of wave values is required. In addition, Liao’s TBC requires double-precisi
arithmetic in numerical computation to achieve stability. This increases the computatic
cost by two to three times. Significant reflections are also found for this boundary condit
at large incident angles. For these reasons, we have developed a more economic, s
and accurate boundary condition in conjunction with the application of the FDTD meth
to the solutions of light scattering by nonspherical particles.

2. IMPROVED TRANSMITTING BOUNDARY CONDITION

A. Conceptual Basis of Transmitting Boundary Condition

In the methodology associated with the implementation of ABCs or TBCs to an outgoi
or scattered wave, it is assumed that the outgoing scattered wave can be approximat
a plane wave (not necessarily a time-harmonic plane wave) in the vicinity of the bound
locally. Under such an assumption, the multitransmitting theory [15] can be used to ¢
struct a transparent or reflectionless boundary. In this subsection we outline, without
mathematical details, the conceptual basis for the TBC developed byt &lo[15] and
discuss its shortcomings in numerical computations.

Liao et al. [15] postulated that the original outgoing wave can be transmitted throus
the boundary along the direction normal to the boundary face in an artificial transmitti
speed, leading to a remained error wave. This error wave can also be transmitted in the -
manner. Consequently, a second-order error wave is produced. After this procedure is ca
out sequentially, the outgoing wave can be transmitted through the boundary eventt
regardless of incident angle. Based on this principle, the wave values at a boundary, sa)
right side boundary (% Xp), can be expressed as

N N!
E L+1
U(t At» Xb) - L:l( 1) (I L)'Ll U[t (L 1)At, Xp LCOK At]v (21)

where U is the wave value,ds an artificial transmitting speed which may differ from
that of the corresponding real physical wave, &ids the temporal increment used in the
discrete calculation. Since the ratio of the temporal increment to the spatial incremer
the finite computation is subject to the Courant—Friedrichs—Levy (CFL) condition [5] f
numerical stability, the wave values on the right-hand side of (2.1) are usually not loca
at grid points. To circumvent the shortcoming, Lietal[15] used a quadratic interpolation
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to obtain the wave values and developed the algorithm

N
U(t+ At, Xp) = ) p—— Y 2.2a
(t+ At, Xp) é( N oo T (2.2a)
TE=[TLn Tea o Teaals (2.2b)

UL =[Us,Uar, .., Uil (2.2¢)

where the superscript T denotes the transpose of the matrix,igre U[t — (j — 1) At, X, —
(i — 1)As] in which As is the spatial increment of the numerical grid. The maktixcan
be calculated from

TL—l,l Tio12 s T TL—1,2L—1 0 0
TL T 0 Tix Tiinr - T 1211 0 forL > 2,
0 0 TL—l,l TL—1,2 o o TL—1‘2L—1

(2.2d)

in which the three elements®t are T, 1 = (2— B)(1—)/2, T1o = B2—p),and T3 =
B(B —1)/2, whereg = ¢, At/As. It is noted that interpolations will reduce the computa:
tional efficiency.

Moghaddam and Chew [16] have pointed out that to stabilize the algorithm given
(2.2) double-precision arithmetic must be used in numerical computations. More recer
Chew and Wagner [17] also found that significant spurious reflections can be caused b
preceding algorithm for large incident angles. They further noted that the performance
the TBC could be greatly improved by using various artificial transmitting speeds in t
interpolation of the wave values simultaneously.

B. Transmitting Boundary Condition Derived from Optimized Extrapolation

In the construction of the transmitting boundary condition, Leéaal.[15] assumed that
the transmission of the outgoing wave consists of the original wave and various order
error waves. Such an explanation is somewhat misleading because fictitious waves, w
may propagate faster than real physical waves, are implied. We find that TBC is essent
an extrapolating scheme to determine the boundary values in terms of optimal extrapole
coefficients. Therefore, without introducing the concept of error waves and the ad |
artificial transmitting speed, we derive an analog of TBC, in which the involved interi
values are located only at grid points, avoiding the interpolation of wave values at intel
points. As shown in Fig. 1, an outgoing or scattered wave strikes the boundary at incic
anglea. Since the wave can be approximated as a plane wave in the vicinity of the bounc
locally, it can be expressed in the OX system as

U(t, Xx) = U(ct — xcosa). (2.3)
From (2.3), the wave value at the boundary &£ Xy, can be written in the form

U(t, Xxp) = U(ct — X, cosw)
= U[c(t — LAscosx/c) — (Xp — LAS) cosa]
= Ut — LAscosx/c, Xp — LAS), (2.4)
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FIG. 1. Geometry for an outgoing or scattered wave in the vicinity of an artificial boundary.

where L is an arbitrarily selected integer ang-0L As) (L=1, 2, 3,...) are the locations of
the interior grid points. Equation (2.4) indicates that the boundary values attinigthe
arrival of the interior values located af x L As at time= t — L As cosx/ c. However, since
the incident angle is unknown in practice, (2.4) is not useful in numerical computations
To circumvent the uncertainty caused by the unknown incident angle, we define the qual

d. =U({t—LAscosx/c, xp—LAS) —U(t—LAT, xp—LAS), L=1,23,..., (2.5)

whereAt is a small increment in time, which may differ from the temporal increnfent
used in the finite difference computation. Then, from (2.4) and (2.5) we can obtain an >
relationship given by

N N
Ut xp) =Y gUt—LAE Xp — LAY + ) gud, (2.6a)
L=1 L=1

o =1 (2.6b)

Mz

L=1

where{g., L =1,2,3,...} is a set of constant coefficients. Although the second term ©
the right-hand side of (2.6a) is unknown, we can minimize this term by properly specifyi
o.- Applying the Taylor expansion to (2.5) along with the plane wave condition given
(2.3), we obtain

“. 1 d™y
d :Z_&

S Lmem, (2.7a)

m=1 n=£§
£ = ASCosx — CATf, (2.7b)
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which are followed by

N oo
1 d™U)
;ngL = Z [H 7dnm

m=1

N
gm<ZgLLm)]. (2.8)
n=§ L=1

Therefore, the optimal selection d¢f.,L=1,2,3,...,N} should satisfy (2.6b) and
Z’[‘zlgLLm =0form=1,2,3,...,N—1; thatis,

101 1 ... 1 1 ][ e ] [2]
1 2 3 . N—-1 N 92 0
1 2 ® ... (N-12 N? © o _|° (2.9)
1 N2 gN=2 .. ... (N=DN-2 NN-2 gN.—l 0

1 N-1 gN-1 . (N—DN-E NNfl_ | on | 1 0]

The determinant of the coefficient matrix of the preceding equation is a special form
the well-known van der Monde determinant. According to the Cramer rule, the solution
(2.9) is given by

N!
_ (_1\L+1 _
g =(-1) N DL L=1,23....,N. (2.10)
Further, it can be proven that
1 EN: L+1 N! N N+1

With the coefficientdg,.,L =1, 2, 3, ...} defined by (2.10), the truncation error denotec
in (2.8) is insignificant. To evaluate the magnitude of the truncation error, let us conside
harmonic plane wave mode defined by

U(t, X) = U(ct — x cosa) = e K(et-xcosa) (2.12)
It follows that
d™uU(n) ) »
Tmn EM) = |(—ik)"eMEE™] < [Kma | ™, (2.13)
n=¢§

where knax= 27t/ Amin in Which Ay is the minimum wavelength allowed by the numerical
grid. To circumvent the numerical dispersion occurring in the finite-difference approxin
tions, we usually selechs/Amin < 20 in numerical computation. Furthermore, as will be
seen in the following discussion, (c@s- cAt/As) is less than unity. Thus, we have

m

2 -
il As(cosa — CAt/As)| «1 form=>1 (2.14)

|kmaxéj'|m =

min
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and we obtain

d™ U(n) N [ 1d™ue | N!
g = oM ey [— n N
; n=t m:zN:+1 m!  dp™ =t o (N —=LD)!
d™My
~0|TGu2| €| ~ Ol (2.15)
n=§

An approximate expression for the boundary condition can subsequently be obtained f
(2.6a) and (2.15) in the form

N
N!
U(t, Xp) = Z(—l)mmua — LAY, Xp — LAS) 4 O[(kmad)N]. (2.16)

Comparing (2.1) with (2.16), we note that they are equivalent, provided\that At and

c, AT = As. It is evident that all the wave values involved in (2.16) are located at gr
points. Accordingly, the interpolation required by Liao’s algorithm can be avoided by usi
the present boundary condition. It is also evident from (2.15) and (2.16) that the bounc
condition is completely reflectionlessgf= 0; that is

Ascosx —cAt=0, or cosx = CAf/As. (2.17)

In the implementation of FDTDAt = As/2 is usually selected for a sufficient stability
requirement, which is very close to the maximum temporal increment allowed by the C
condition in the 3D case [5]. Therefore, if we selédt= At, then the boundary is reflec-
tionless at incident angle of 600n the other hand, the incident angle corresponding to tf
complete transmission is @f we selectAt = 2At.

C. Mixed T Algorithm

The performance of an absorbing boundary condition is generally characterized by
reflection coefficient associated with it. We shall express (2.16) in a concise operator forr
study the reflecting characteristics of the boundary condition. Following Chew and Wag
[17], we define the space-shifting operatorA3] and time-advancing operatorAt) as

G(AS)U(t, Xp) = U(t, Xp — AS), (2.18a)
T(ADHU(L, xp) = U(t — AT, Xp). (2.18b)

According to the definitions of these operators and the binomial formula, we can rewi
(2.16) in the form

[1 - T(ADHG(A9)INU(L, Xp) = 0. (2.19)

In numerical computations, the second or third order formula of the boundary conditior
generally used. If we select(At) = T(At) (hereafter referred to as the T algorithm), then
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the third-order formula in finite difference form is given by
U™ (1p, 3, K) = 33U, — 1, J, K) — 83U (1 — 2, 3, K) + U"2(1, — 3,3, K), (2.20)

where the indices |, J, and K dendgte y, X) = (I, J, K) As, |, denotes the right-side bound-
ary, and n is the time step. On the other hand, if we seleafir = T(2At) = T?(At)
(hereafter referred to as thé @lgorithm), then the third-order algorithm is given by

U™ (1p, 3, K) = 3UM (1, — 1, 3, K) —3U 31, — 2, J, K) + UM 5(1, — 3, 3, K).  (2.21)

Equations (2.20) and (2.21) are for the 3D case. It should be noted that the boun
equations are in the same form for both the 2D and the 3D cases. We have appliec
third-order 7 algorithm to solve the scattering of light by ice crystals in our previous stuc
in which the instability of the algorithm has been removed by weighing the third-ord
boundary equation with its second-order counterpart [18].

Although the T and % algorithms are given by similar expressions, as shown in (2.2
and (2.21), their reflecting features are significantly different. Let us consider a harma
plane wave impinging on the right boundary. After the incident wave interacts with t
boundary, the total wave in the proximity of the boundary can be expressed as

Un(l, J, K) — é(kyJAS-FkZKA%wnAI)eileAS + Ré(kyJAS-FkZKA%a)nAI)efikxlAS’ (222)

where the first and second terms on the right-hand side stand for the incident and refle
waves, respectively, and R is the reflection coefficient of the boundary. Substituting (2.
into (2.20) and (2.21), we obtain the reflection coefficientsaRd Ry, for the T and T
algorithms, respectively, as

R L _Phnshg dkas | SINKASCAY/As — cos) /2] 3 (2.233)
T sin[KAs(cAt/As+ cosa)/2] | '
_ _2keASl oiBkeAS sin[kAs(2cAt/As — cosa) /2] }3
Rrz = —e%%e {sin[kAs(ZcAt/As+ cosa)/2] | (2.23b)

The magnitude of the reflection coefficients is shown in Fig. 2. It is clear that the
algorithm performs quite well for the incident angles smaller th&t B0t we note that
the reflection significantly increases when the angle is larger tharm4g performance of
the T algorithm, however, is much improved for large incident angles. The accuracy of
boundary condition can be significantly improved if the advantages of the preceding t
algorithms are combined. To accomplish this, we rewrite (2.19) as

[1 - TAHGA9IN M1 — T2(AHG(AS)IMU(E, Xp) = O, (2.24)

where the integer M should be smaller than N. Since the time-advancing operators invo
in (2.24) are from both the T and &lgorithms, the algorithm given by (2.24) will be referred
to as the mixed T algorithm. It should be pointed out that this boundary algorithmis direc
making use of the wave values at discrete grid points to extrapolate the boundary val
Because of the nature of the present boundary condition construction, it is not particul
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FIG. 2. Comparison of the reflection coefficients associated with thé Taid the mixed T algorithms. The
small diagrams are the enlargements of the reflection coefficients for small values.

meaningful to express the boundary equation in a continuous operator form. The reflec
coefficient associated with the algorithm given by (2.24) is expressed by

Rur — _ézkxAslbikaAs{ sin[kAs(cAt/As — cosa) /2] }N‘M

sin[kAs(cAt/As+ cosa) /2]

. M
{sm[kAs(ZcAt/AS— cosa) /2] } . (2.25)

Sin[KAs(2cAt/As+ cosw) /2]

For a third-order algorithm involving N-3 and M= 1, the magnitude of the reflection
coefficient given by (2.25) is shown in Fig. 2 for comparison with those of the T &nd -
algorithms. The reflection coefficient associated with the mixed T algorithm is less tt
1% for the incident angle fronQo about 70. It is apparent that the present algorithm has
absorbed the advantages of the preceding two algorithms.

For application to the discrete computation, we present the second- and third-order m
T algorithms in explicit forms. The second-order formula£R and M= 1) for the right-
side boundary can be expressed by

U1, J, K)=U"(l,— 1, 3, K) + UM 11, — 1, I, K) = U"2(1, — 2, J, K), (2.26)
while the counterpart of the third order N3 amd M=1) is

U™ (1, L K)=2U"(lp — 1, 3 K) + U (1, — 1, 3 K) — U 21, — 2, J, K)
—2U"2(lp — 2, 3, K) + U"3(lp — 3, J, K). (2.27)

It should be pointed out that the mixed T algorithm is an economic boundary condition
terms of the required number of variables to be stored for updating the boundary value."
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FIG. 3. Same as Fig. 2, except for Liao’s TBC, Engquist and Majda’s ABC, and the mixed T algorithm.

and six variables are needed for the second- and third-order mixed T algorithms, respecti
The third-order T algorithm, however, requires nine variables, while 14 variables are neec
for the third-order Liao’s TBC. Furthermore, we also note that the mixed T algorithm
more efficient than Liao’s TBC given by (2.2) because the former is less reflectional fo
wider range of incident angles. The reflection coefficient of Liao’s TBC has been deri\
by Chew and Wagner [17]. Figure 3 compares the spurious reflection associated with Li;
TBC and the mixed T algorithm. Note thatt/ A = 0.5 is used in the calculation for Liao’s
TBC. It is clear that the reflection feature of Liao’s TBC is very similar to that of the -
algorithm. Although Liao’s TBC is slightly more accurate than the mixed T algorithm fc
incident angles smaller than 4%t produces significant reflections for large incident angles
Figure 3 also presents the reflection coefficient for the typical ABC that was derived
Engquist and Majda [19] on the basis of OWWE. Higdon [20] showed that the pth-orc
boundary condition of Engquist and Majda is equivalent to

p
(;’t _ ;)() U=o, (2.28)

where the boundary is supposed to be at&xand the wave speed is scaled to unit. The
reflection coefficient associated with the preceding equation is

1—cosa\"
R=—(—"—-—+]. 2.29
<1+Cos<x> ( )

From Fig. 3 it is evident that the reflection coefficient derived from Engquist and Majd:
ABC differs only slightly from Liao’s TBC.
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D. Stabilize Mixed T Algorithm

In the preceding discussion, the outgoing wave is assumed to be a plane wave ir
vicinity of the boundary locally. Under this assumption amplification of the computed wa
values can occur. In fact, if (2.26) and (2.27) are used, the overflow phenomena will ev
tually occur in numerical computations. Moghaddam and Chew [16] studied the instabil
associated with Liao’s TBC. By applying the Z-transform to Liao’s TBC given by (2.2
they found that one root of the characteristic equation of the Z-transform locates on the
circle around the origin in the complex plane, which can be driven outside the circle due
roundoff errors in numerical computations, rendering the system unstable. To circumy
the instability, they further suggested that adiabatic loss terms be added,t®,k, and
T13in(2.2). Inthe present investigation, we find that the instability is essentially associa
with the location-dependent amplitude of the outgoing or scattered wave. We have der
a stabilized scheme for the boundary equation.

To understand the instability of the boundary condition, the stability analysis shot
be carried out for the coupled system of the boundary equation and the finite differe
equations applied to the inner grid points, which becomes an eigenvalue problem. Howe
it appears not possible to solve this eigenvalue problem because the system is extre
complicated. Recently, Miat al.[21] stated that the Fourier or Von Neumann method ca
be employed to investigate the instability of the boundary condition without consideri
the coupled system. The method is based on the principle that f(t, x, y, z), a general func
of time and space, can be represented by its Fourier spectrum as

3 o0 .
f(t,x,y,2)=<%) / / / F(t, ky, ky, ko)@®x Ttk gy dy dz (2.30)

where Rt, ky, ky, kz) is the Fourier spectrum of f(t, x, y, z), and,lky, and k are the
components of the wave vector. Thus, the stability of the boundary is ensured by the stak
of F(t, ky, ky, kz) expli(kxx + kyy + k;2)]. Since the plane wave condition is assumed ir
the proximity of the boundary locally, the stability analysis is only required for a harmon
wave mode which is in the form of expki.x + kyy + k.z) — iwt]. In practice, this procedure
assumes that the separation of variables is allowed for the wave value; that is,

Un(l’ J, K) — pnei(kx|+KyJ+KZK)AS’ (231)

wherep is the amplifying coefficient for the one step time-updating iteratiofp < 1,
the algorithm is stable; otherwise, amplification of the simulated field takes place and
numerical overflow will occur eventually. Substituting (2.31) into the %, and mixed T
boundary equations, we can obtain the valuedoFor example, for the T algorithm we
have
p=e%A or |p|=L1 (2.32)

That is, the amplification in the temporal updating process is neutral and the bounc
condition will be stable. However, overflow can always be produced by the T algoritl
even if double-precision arithmetic is used. In addition, we find that the higher the or
of the algorithm is used, the sooner the overflow will occur. The difference between
theoretical analysis and computational aspect is because the preceding method is valid
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for an unbounded or periodic boundary system; otherwise, the location-dependent of
spectrum, F(tky, ky, kz), must be accounted for in the stability analysis.

For simplicity, but without losing of generality, we consider the scattering of a scal
harmonic plane wave by a particle. The wave equation for the scalar wave is given by

1 92 )
2agY—Vu=0o (2.33)

The Helmholtz equation associated with (2.33) is then
V2U + kU =0, (2.34)

where k= w/c is the wavenumber. It can be proven that the radiation or outgoing soluti
to (2.34) in the 3D case be expressed by the equation [10]

il ST

L b
RL:O R

UR,0,9) =

(2.35)

whered and ¢ are the zenith and azimuthal angles, respectively and R is the distal
between the observing position to the source. The counterpart of (2.35) in the 2D case

be written as [10]
U (kR—7/2) fL ((P)
(R, ¢) = \/ é E : (2.36)

In the following analysis of the stability, we only consider the 3D case because the se
result can be obtained for the 2D case. As shown in Fig. 4, the artificial boundary is loce
far enough so that only the first term in the expansion on the right-hand side of (2.35) ne
to be considered because other terms are insignificant. Thus, we have

UR,6,9) ~ AR, p), (2.372)

AR = 1/R (2.37b)

Therefore, the location-dependence of the wave amplitude at the grid pejfs Ps, ...
which are along the normal of the boundary face can be expressed by

1
A, =
P (o — LAS)2 + y2 4 72|12

1 .
= o [1-2LASK/R + (LAS/Ry)’] V2
b

~ Aper2se/Re for L =1,2,3, ..., (2.38)

where A = 1/Rb in which R = (xZ + y? + z%)¥/2 is the distance between the source anc
the boundary point. In the derivation of (2.38),As/Ry)? is ignored because it is much
smallar than 2. As/R2 and As/R, < 1 is also assumed. Lgt = As cosx/Ry; then the
amplitude of the harmonic wave in the proximity of the boundary is

Ap =Ape’t, L=123,... (2.39)
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FIG. 4. Geometry for studying the numerical instability associated with the transmitting boundary conditiol

Thus, if the variation of the amplitude is accounted for, then (2.31) should be
Un(l, J, K) — ,Oney(lb_l)é(kxl+kyJ+sz)As. (240)
Substituting (2.40) into the T algorithm, we obtain
p=ee A o |p|l=¢ >1 (2.41)

That is, the simulated field will undergo an amplification, leading to numerical instabilit
Physically, the instability occurs because the wave amplitude is assumed to be independs
the spatial location near the boundary in the derivation of the boundary equations prese
in Subsections 2A and 2B. When the wave value at an interior point thatésaway from
the boundary is extrapolated to obtain the boundary value, an amplification given by a fa
of exp(rL) is implied. For the Nth-order algorithmN& is implied, in conjunction with the
wave value at the most inner grid point along the normal of the boundary. Therefore,
higher order algorithm will lead to serious amplification.

In order to obtain a stable algorithm, we introduce spatial diffusive coefficients in t
boundary equation to suppress the preceding amplification. Consider a boundary
at (I, J, K). If an interior point at (h — L, J, K) is involved in the extrapolation of the
boundary value, the corresponding coefficient is gxp( To circumvent the amplification,
the diffusive coefficient should be expf’L). Thus, the stabilized schemes associated witl
(2.26) and (2.27) can be rewritten as

U™y, 3, K) = e 7 [U"(1p — 1,3, K) + U (1l — 1, I K)] — e 2 U"2(lp — 2, J, K),
(2.42)
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and

U™ (lp, 3 K) = e 7[2U"(p — 1, , K) + U™ (lp — 1, 3 K)]
—e 2 [U Yy — 2,3, K) + 2U"2(l, — 2,3, K)]
+e U3, — 3,3, K). (2.43)

In practice, the value of is unknown and must be determined empirically. In this inves
tigation, by using the trial and error method, we find that 0.05 and 0.01-0.005 are
appropriate for a continuous sinusoidal wave source and a pulse source, respectively
boundary equations given by (2.42) and (2.43) are extremely stable in numerical c
putations. For a 2D small grid with the size of 8181, we have run the FDTD code in
single-precision arithmetic with a point sinusoidal source. We find that overflow does 1
occur even for more than 18teps in the time-updating iteration.

3. APPLICABILITY OF THE MIXED T ALGORITHM

In this section, three kinds of numerical experiments are carried out to test the accul
and stability of the preceding stabilized mixed T algorithm. The accuracy of the pres
boundary condition is compared with that of the most popular Mur’s ABC. First, the Mur
ABC is briefly recapitulated. For simplicity, we only consider the 2D case. The wa
equation can be expressed in an operator form as [12]

LiL;U=0, 3.1)

where L and L, are OWWE operators given by

D

L =Dy + ?t’ /1—c?D2/D2, (3.2a)
- D 2D2 /D2

L =D /1—¢2D2/D2, (3.2b)

in which Dy, Dy, and 0 stand ford/dx, 8/9y, and/at, respectively. For a boundary, say,
the right-side boundary at:¢ X, it has been proven that it is completely reflectionless i
in the following OWWE is satisfied [14, 13]:

Ly U] =0. (3.3)

X=Xp

The OWWE operator £, however, is a pseudo-differential operator due to the existen
of the radical. Thus, (3.3) cannot be discretized as a finite difference equation. In orde
obtain the discrete form for OWWE, various rational functions can be used to approxim
the OWWE operator. The most common approach is the expansion of the radical usinc
Taylor series, as presented by Engquist and Majda [19] and Mur [14]. Keeping the f
term and the first two terms in the Taylor expansion will lead to the first- and second-or
Mur’'s ABC, respectively. In practice, ABC is discretized by using the central-differenc
scheme for the differentials in time and space. The reflection coefficient associated \
Mur’'s ABC has been obtained by Ray [22]. Figure 5 compares the reflection coefficient
Mur’'s ABC and the mixed T algorithm. It is evident that the mixed T algorithm appears
function better and it is not sensitive to the wavelength of incident waves.
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FIG.5. Same as Fig. 2, except for Mur's ABC and the mixed T algorithm.

A. Experiment 1

In this experiment, we consider the propagation of a TM wave which is excited by
sinusoidal point source. The governing equations for the electromagnetic fields are

19E, 9H, 9H . (27 o

- =" Axsin| —ct |h()s(F —T 3.4a
S = - T masin( 2t s - o (3.42)
10H oE,

“Ix_ 7= (3.4b)
c ot ay

10H oE.

) (3.4¢c)
c ot 0X

where h(t) is the Heaviside unit-step function, attid — T,) is the Diracé function. In
numerical computations, we have selecteg- 20 andi =20As. The finite difference
equations associated with (3.4) are given by

E77(1,D) = EZ(L ) + CA—ASt{ [HYFY2(1 4+ 1/2,9) — HYPY2( - 1/2, )]

—[HytY2(1, 34 1/2) — HY 21,3 — 1/2)] }

cAt 2
+A L ghsin [THC(” + 1/2)At} h(n+1/2)8,,835,  (3.50)

A
HY2(1, 3+ 1/2) = HFY2(1, 0+ 1/2) — CA—St [ED(I, I+ 1) — ED(1, )], (3.5b)

HY 230+ 1/2,9) = HY 2(1 + 1/2,9) + CA—ASt [ED(+ 1,9 — B, D), (3.5¢)

wheres, |, ands; 3, are the Kronecker symbols and,(l,) is the location of the source. The
simulation of the TM wave propagation is restricted to ax631 grid mesh using Mur’s
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FIG. 6. Snapshots of the electric field at the time step 1200. A sinusoidal source is located(&tJ) =

(31, 16). The upper diagram is the result produced by Mur’s ABC, while the lower diagram is the result obtair
from the mixed T algorithm.

ABC or the mixed T transmitting boundary condition. It is known that the contours
the electromagnetic field would be a set of circles centered at the source if the boun
is completely reflectionless. Figure 6 is the snapshot of the electric fiele=dt200 for
the case when the source is located at the center of the grid. It is clear that the contou
the electric field are distorted near the left and right boundaries when Mur’s ABC is us
The contours are almost perfect circles when the mixed T algorithm is used. Figure 7 is
case when the point source has been moved closer to the lower right corner of the grit
this case the distortion of the contours is seen for both boundary conditions. However,
distortion is much reduced by using the mixed T algorithm. Next, the wave equation for
electric field can be obtained from (3.4) as

9%°E, 9%°E, 0%°E, 1 9°E,
ax2 ay? 9072 c2 ot?

= —27Acos <%ct) h(t)8(F —To). (3.6)

Following Achenbech [23], the exact solution for (3.6) is given by

t-R/c cog2mcr/A)
E;r,0)=A dr fort—R 0) 3.7
z(T, 1) c/0 [C2(t— 1)2 — RE]12 t for /c >0, (3.7)

where R= |r — Tp| in which T, is the position of the source. It should be noted that th
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FIG. 7. Same as Fig. 6, except that the source is locateld dt= (8, 8).

exact solution given by Mur [14] is not correct because the upper limit of the integration
his equation (20) should not be infinite. Figures 8 and 9 show the comparison betweer
FDTD results and the exact solution. In Fig. 8 the electric field is seen along the lines pare
to the x-axis and through the source. Both Mur's ABC and the mixed T algorithm perfol
well, if the source is located at the center of the grid, although slight computational err
associated with Mur's ABC are still detectable in the proximity of the boundary. Whe
the source is located at the grid point (8, 8), significant errors can be observed due tc
reflection of Mur's ABC. Figure 9 is the electric field observed along the lines through tl

source and parallel to the y-axis. Again, the mixed T algorithm performs more accurat
than Mur's ABC.

B. Experiment 2

An objective method to test the spurious reflection of a boundary condition is
simultaneously simulate the wave propagation in small and large domains which st
the same origin or center. This method has been widely used by other researchers [12
As shown in Fig.10, the small domain is the test domain within which the performance of
boundary will be tested. The large domain should be big enough so that the reflection fi
the outer boundary will not enter the small domain by the time the numerical experim
is terminated. The experiment is carried out with respect to the electric field. The fielc
observed within the overlapped part of the two domains. Let the fields associated with
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FIG.8. Comparison of the electric field obtained by the FDTD method and the exact solution. The observa
of the fields is along the lines parallel the X-axis and through the source.

small and large domains b€ &, J) and E’Z‘(I, J), respectively. Since the reflection from
the outer boundary has not reached the overlapped régfi¢h J) within the overlapped
domain is reflection-free. Then, for the reflected wave we have

D"(1, 9 = Ey1, 9 — B, J). (3.8)
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FIG. 9. Same as Fig. 8, except that the observation is performed along the lines parallel to the Y-axis
through the source.

Further, we can define the global measure of the spurious reflection as

D= > D", I
| J
=" Y (20,9 - EaLY) (3.9)
| J

where the summation is performed over the grid points inside the overlapped domain.
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FIG. 10. Small and large domains used for testing the reflection of an artificial boundary.

In this experiment a pulse point source located at the center of the domain is used.
test domain is the size of 106451, and a “white space” consisting of 30 grid points is
used for the distance between the inner and outer boundaries. The time-marching iter:
should be terminated at time step-r1 70; otherwise, the reflection from the outer boundar
will center the overlapped region at this moment. The following extremely smooth comp
pulse presented by Kriegsmaanal. [24] is used in this experiment:

2510 — 15cog %) + 6 cof %) — cog( 3 )| forn < 40

source= (3.10)
0 for n> 40.

The snapshot of the reflected electric field at B00 along 3= 2 is shown in Fig. 11, where
the global measure of the reflection error is also shown. The results show a phase differ
of aboutr. The magnitude of the reflection introduced by Mur’'s ABC is much larger tha
that by the mixed T algorithm. Moreover, from the global reflection measure, it is knov
that the maximum global error occurs when the peak of the pulse has passed the na
sides of the inner boundary. The maximum error produced by Mur’s ABC is about 3 tinr
larger than that by the mixed T algorithm. This numerical experiment also indicates t
the mixed T algorithm is more accurate.

C. Experiment 3

In the two preceding experiments, the source of the outgoing wave is just a point sou
For the scattering of light by an object, the source of the outgoing wave, however, he
finite extension. Due to the scattering by various parts of the object, a number of waves
arrive at the boundary simultaneously. To test the applicability of the mixed T algoritt
to this condition, the scattering of a TM wave by an infinite circular cylinder is solve
by the FDTD method since the exact solution is available for comparison. The proced
concerning the application of the FDTD technique to the scattering by the polarized w.
in the 2D case has been presented in our previous study [16]. First, a Gaussian pu
used as the incident wave, and the scattering process is simulated explicitly by updatin
discretized Maxwell equations within the truncated domain. The harmonic wave mode
interest is then determined by performing the Fourier transform to the computed field wh
is time-dependent. Subsequently, the near-field so obtained is transformed to far-field ol
basis of equivalent electric and magnetic currents. The scattered TM wave in the far-f
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can be expressed by

2 1/2 ) ) _
Ei(r, (p) — <E> é(kr+3ﬂ/4)—lkXF((p)EIZ’

(3.11)

whereg is the scattering angle, r is the distance from the particle to the observing point, ¢
the scattering function k) is determined by the electromagnetic properties of the particle
From (3.11), the normalized scattering phase function can be defined by

21
P(p) = k——|F<<p)|2,
T Os

(3.12)

whereos is the scattering cross section of the particle. For a nonabsorptive pasticse,

given by

05 = “Re[FO")]

(3.13)
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FIG. 12. Normalized scattering phase functions of an infinite circular cylinder computed by the FDTD a
exact methods.

Figure 12 shows that the normalized phase function is obtained by the FDTD techni
and the exact method. It can be seen that significant errors are produced for the scatt
angles around 120f Mur's ABC is used along with a “white space” of five cells. The accu-
racy of the FDTD solution is significantly improved by using the mixed T algorithm with th
same “white space,” although slight deviations are still detectable for large scattering anc
When the “white space” is increased to 10 cells, the results obtained by using the mixe
algorithm almost converges to the exact solution, whereas Mur’'s ABC still produces sig!
icant errors around the scattering angle of’1Zearly, Mur's ABC requires more “white
space” between the boundary and the scattering object to converge the scattering solt

Figure 13 displays the scattering efficiency, the ratio of the scattering cross-section
to the projection cross-section area of the particle. Excellent performance is shown for t
Mur’'s ABC and the mixed T algorithm when the size parameter is less than 11. However,
larger size parameters the results obtained from the mixed T algorithm are more accu
It should noted that the errors in the case of large size parameters are partly caused
staircasing approximation in defining the particle shape in a Cartesian grid, and they
also caused by the finite difference approximation in discretizing the differential equatio
Since the pulse technique is used in the computation, the wavelength concerned ir
Fourier transform is shorter for large size parameters than for small size parameters.
a longer wavelength, not only is the staircasing effect small, but also does the numel
dispersion associated with finite difference approximation decrease.

4. CONCLUSIONS

We have developed a mixed T algorithm to truncate the spatial domain in modell
light scattering processes by using the finite-difference technique. Our algorithm i
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FIG.13. Scattering efficiencies involving infinite circular cylinders computed by the FDTD and exact methoc

generalization of the transmitting boundary condition developed by &iad [15]. The
improved boundary condition in this algorithm is numerically economic and produces mq
accurate results for large incident angles. The applicability of the mixed T algorithm t
been verified by three numerical experiments. These include the propagation of a TM w
excited by a sinusoidal point source, simultaneous simulation of the wave propagatio
small and large domains that share the same origin, and the scattering of a TM wave b
infinite circular cylinder. It is shown that the accuracy of the boundary condition propos
in this study is improved, in comparison with the popular absorbing boundary conditi
developed by Mur [14]. We find that a “white space” of 10 cells is sufficiently enoug
for applications to the scattering of light by a dielectric object if the mixed T algorithr
is used. We have successfully applied this algorithm to the solution of light scattering
nonspherical particles with defined and irregular shapes and compositions.
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